
6

A Computational Algorithm for Metrical Classification of Verse

Rama N.1 and Meenakshi Lakshmanan2

1 Department of Computer Science, Presidency College
Chennai 600 005, India

2 Department of Computer Science, Meenakshi College for Women
Chennai 600 024, India

and
Research Scholar, Mother Teresa Women’s University

Kodaikanal 624 101, India

Abstract

The science of versification and analysis of verse in Sanskrit is
governed by rules of metre or chandas. Such metre-wise
classification of verses has numerous uses for scholars and
researchers alike, such as in the study of poets and their style of
Sanskrit poetical works. This paper presents a comprehensive
computational scheme and set of algorithms to identify the metre
of verses given as Sanskrit (Unicode) or English E-text (Latin
Unicode). The paper also demonstrates the use of euphonic
conjunction rules to correct verses in which these conjunctions,
which are compulsory in verse, have erroneously not been
implemented.
Keywords: Sanskrit, verse, hashing, metre, chandas, metrical
classification, sandhi.

1. Introduction

Versification and analysis of poetry in any language have
always constituted an exacting combination of art, science
and linguistic skill. This is especially so in Sanskrit since it
is governed by multitudes of rules to which entire treatises
in the ancient literature of the language have been
dedicated.

The metrical structure of verses is of prime importance and
interest to researchers of Sanskrit literary works. Sanskrit
prosody follows a well-defined classification system that
identifies verses in terms of its metre (called chandas is
Sanskrit) and caesura or pauses in verses dictated by sense
or natural speech (called yati in Sanskrit).

Identification of these two characteristics of a Sanskrit
verse serves many purposes for researchers, such as
throwing light on the literary acumen of the poet,
providing an insight into the metrical preferences of the
poet as also creating a knowledge base of the various
metres used in a particular treatise. Apart from such and

other utilities for the researcher, the identification of the
two aforesaid characteristics would also help even a
person who is not too knowledgeable in the language and
unfamiliar with the meaning of the verse, to chant the
verse by pausing at the appropriate junctures.

In this paper, we explore the scheme of classification of
Sanskrit prosody [5] and present computational algorithms
to classify verses given either in Sanskrit Unicode font or
as English E-text.

1.1 Unicode Representation

The Unicode (UTF-8) standard is what has been adopted
universally for the purpose of encoding Indian language
texts into digital format. The Unicode Consortium has
assigned the Unicode hexadecimal range 0900 - 097F for
Sanskrit characters.

All characters including the diacritical characters used to
represent Sanskrit letters in E-texts are found dispersed
across the Basic Latin (0000-007F), Latin-1 Supplement
(0080-00FF), Latin Extended-A (0100-017F) and Latin
Extended Additional (1E00 – 1EFF) Unicode ranges.

The Latin character set has been employed in this paper to
represent Sanskrit letters as E-text.

1.2 The Basis of the Work

The earliest and most important work in Sanskrit prosody
is the Piṅgala-chandas-śāstra attributed to the ancient
Sage Piṅgala [3]. This treatise consists of sūtra-s or
aphorisms distributed over eight books [3, 5]. There are
various other important and original treatises on the
subject that deal extensively with the classification of
verse into metres along with the caesura. V. S. Apte’s

DR.R
UPN

AT
HJI(

 D
R.R

UPA
K

NAT
H)

7

comprehensive work on consolidation of these various
sources has been presented by him in [5] and [6], and
covers all aspects of Sanskrit prosody. This has therefore
been adopted as the primary basis of the present work.

2. The Domain

Sanskrit verse is considered a sequence of four pāda-s or
quarters. Each quarter is regulated either by the number of
syllables (akṣara-s) or the number of syllabic instants
(mātrā-s) and the determination of metres is based on
either of these factors. Metres based on the first yardstick
are called varṇa metres, while those based on the second
are termed jāti metres.

2.1 Varṇa Metres

A syllable is as much of a word as can be pronounced at
once. There are two types of syllables to contend with –
the long (guru) and the short (laghu). The rule that
categorizes letters into these two types is itself given in the
form of a verse:

sānusvāraśca dīrghaśca visargī ca gururbhavet |
varṇaḥ saṁyogapūrvaśca tathā pādāntago’pi vā ||

This succinctly stated rule conveys the following
categorization of long and short syllables:

Short syllables:

1. Normally, all short vowels – a, i, u, ṛ, ḷ.

Long syllables:

2. All long vowels – ā, ī, ū, ṝ.
3. Any short vowel followed by the anusvāra (ṁ).
4. Any short vowel followed by the visarga (ḥ).
5. Any short vowel followed by a double consonant.

(The exceptions to this rule are the double
consonants pr, br, kr and those starting with h. In
these four cases, the preceding short vowel can
optionally remain short.)

6. Optionally, any short vowel at the end of a pāda.

The optional nature of the exceptions mentioned in the
rules 5 and 6 above, indicate a sort of poetic license.

From the above discussion it is clear that the four quarters
of a verse can each be represented as a sequence of long
and short syllables. Traditionally, identification of varṇa
metres is done on the basis of metrical feet, termed ‘gaṇa-
s’ in Sanskrit. A gaṇa is a combination of three syllables,
each of which may be long or short. As such, there are
eight such gaṇa-s defined as in Table 1, in which ‘L’

stands for a laghu (short) letter, and ‘G’ for a guru (long)
one.

Table 1 – Gaṇa scheme

Syllable-
combination

Gaṇa Corresponding Gaṇa
in English Poetry

1 LGG y Bacchius
2 GLG r Amphimacer
3 GGL t Anti-bacchius
4 GLL bh Dactylus
5 LGL j Amphibrachys
6 LLG s Anapaestus
7 GGG m Molussus
8 LLL n Tribrachys

In Sanskrit poetry, the number of syllables in a quarter can
vary from 1 to 999. When the number of syllables is
between 1 and 26 per quarter, the meters are categorized
into three:

a. Sama (meaning ‘equal’) – In this, all the four
quarters of the verse are identical not just in terms
of the number of syllables, but also in the
sequence of long and short syllables.

b. Ardhasama (meaning ‘half-equal’) – In this, the
first and third quarters are identical, as are the
second and fourth.

c. Viṣama (meaning ‘unequal’) – In this, the quarters
are uneven or mixed up.

The meters in which there are greater than 26 syllables per
quarter are of the ‘danḍaka’ type and are beyond the scope
of this work.

Given that each syllable can be either ‘L’ or ‘G’, the
number of possible sama metres with 1 syllable is 21 = 2,
the number with 2 syllables is 22 = 4 and so on. There is
clearly a combinatorial explosion in the number of
possible 26-syllabled Sama metres: 226, which is
approximately 67 million! Thus, the total number of sama
metres having anywhere between 1 and 26 syllables per
quarter, would be ∑ 2ଶ

ୀ ଵ , which works out to about
134.2 million! For ardhasama metres the possible number
is obviously even higher, and with viṣama, the possibilities
are infinite.

However, the number of metres in actual use across the
literature is limited to a smaller number than the number
theoretically possible. Hence, this work handles the metres
in vogue, which indeed themselves constitute a sizeable
quantity and pose non-trivial computational problems.

DR.R
UPN

AT
HJI(

 D
R.R

UPA
K

NAT
H)

8

2.2 Jāti Metres

In this type of metre, each short syllable is counted as
constituting one syllabic foot or mātrā, while a long
syllable is counted as constituting two. Such metres are
categorized into two, depending on whether the verse is
considered as constituted by two halves, or by four
quarters. The various types of the oft-encountered Āryā
metres are examples of the first variety.

In Jāti metres, the identification of metres is done based
mainly on the number of certain groups of mātrā-s and
sometimes partially on gaṇa patterns. Standard groups are
those of 4, 6, 8 and 10 mātrā-s. Groups of 2 and 3 mātrā-s
are also relevant in a few cases.

It is relevant to state that the same verse could have a
varṇa classification as well as a jāti classification, but this
is not necessarily the case.

3. The Problem

Given a verse, the problem is to identify its metre and
caesura, both as a varṇa metre and/or as a jāti metre. Once
this problem is solved with an efficient algorithm, the
same can be applied to classifying the verses of an entire
poetic text given as input.

Among the varṇa metres, there are close to 600 sama
metres, 50 ardhasama metres and 35 viṣama metres in
general use in the literature [2]. As for the jāti variety of
metres, there are about 42 metres in vogue.

The steps in metre classification of a verse are broadly
outlined in the algorithm below. This is the way manual
identification is done in Sanskrit.

Algorithm IdentifyMetre

Step 1: Parse the verse and identify its four pāda-s.

Step 2: Identify the guru (long) and laghu (short) syllables.

Step 3: Identify the gaṇa sequence for each pāda.

Step 4: Identify the possible class of varṇa metre.

Step 5: Identify the varṇa metre and its caesura based on the
gaṇa-s, from a database.

Step 6: Identify the mātrā groups and match the pattern with
existing jāti metres.

end Algorithm

The first challenge here has to do with the input verse
itself. In Sanskrit, euphonic conjunctions or sandhi-s are
compulsory in verse. As such, if the input verse does not
conform to the sandhi rules, the short and long syllables

will turn out to be wrongly calculated, and this will result
in wrong classification. For example, “hariḥ iha” should
not be written in this manner, but as “haririha”, according
to the rules of sandhi [4]. The visarga (ḥ) causes the
preceding normally short vowel “i” to be counted as long.
However, when the sandhi is properly implemented, the
visarga disappears, and thereafter the same vowel “i” is
rightly counted as short. Similar is the case with sandhi-s
involving the anusvāra (ṁ). For example, “phalaṁ ahaṁ”
is a combination of two correctly written words, “phalaṁ”
and “ahaṁ” but when they come together in this way, the
combination gets transformed into phalamaham, wherein
the anusvāra is replaced by the ordinary consonant “m”.
The vowel “a” preceding the original “ṁ” would have
been wrongly counted as long if the sandhi had not been
corrected. Another typical example is gacchan + iti =
gacchanniti. This sandhi transformation causes the
normally short vowel “a” occurring just before “n”, to be
counted as long.

One must, however, be careful in the application of sandhi
rules. In cases such as “rāmaḥ iti”, which rightly would
get transformed into “rāma iti”, there should not be any
further transformation into “rāmeti” [4]. At any rate,
whether the vowel is “a” followed by a visarga or is the
transformed vowel “e”, it is counted as long. As such,
there is no real problem in this case as far as metre
identification is concerned. Hence, such sandhi rules need
not be applied here.

The second challenge is to identify the four pāda-s of the
verse. We assume that the input verse has the full stop
symbol “|” at the end of the first two pāda-s of the verse
and a double fullstop symbol “||” at the end of the entire
verse, as is the normal practice in Sanskrit poetry.
Identifying the two parts of the verse is a trivial task.
However, clearly, there are numerous ways of splitting
each of these two parts into two pāda-s. After all, the
metre may be a sama metre, an ardhasama metre or a
viṣama metre. Thus, if each half of the verse has 20
syllables, it may be split as 10 syllables per pāda or as 9
and 11 or as 8 and 12, etc. It is essential for the solution
algorithm to quickly consider the possibilities and arrive at
a solution in a reasonable amount of time.

The third challenge lies in the parsing and identification of
the short and long syllables according to the rules. This has
to be efficiently done. Further, in case no metre is
identified with the original gaṇa form of the verse, the
options that go with the exceptions mentioned in Section
2.1 above need to be considered and tried out.

The fourth challenge is to speed up database lookup,
especially given that the keys to be matched are strings.

DR.R
UPN

AT
HJI(

 D
R.R

UPA
K

NAT
H)

9

The fifth challenge is to calculate mātrā-s according to the
complex rules that govern jāti metres.

In addition to this, the sixth challenge is for the
classification algorithm to handle both English E-text and
Sanskrit Unicode characters as input.

4. The Solution

4.1 Handling input given in the Sanskrit Unicode and
Latin character sets

As a first step, we convert Sanskrit Unicode character
input into English E-text. We then present algorithms to
solve the metre classification problem, which accept
English E-text [2] as input. The conversion of Sanskrit
Unicode characters to Latin characters is based on a
Unicode mapping. The complication here is that a single
Sanskrit character sometimes maps to a sequence of Latin
characters. For example, is a single Sanskrit character
that is written using the three Latin characters “vra”. In
this work, Unicode mappings were prepared for this
purpose of conversion, using the comprehensive Sanskrit
2003 font as basis.

4.2 Algorithm to identify long and short syllables

We now present an algorithm that takes a Sanskrit verse
given as input in the Latin Unicode character set, parses it
and enumerates the sequence of long and short syllables.

Table 2 – Sets of Sanskrit letters

Name of the Set Letters in the Set
1 ShortVowels a, i, u, ṛ, ḷ
2 LongVowels ā, ī, ū, ṛ, e, ai, o, au
3 Vowels ShortVowels, LongVowels
4 Consonants k, kh, g, gh, ṅ,

c, ch, j, jh, ñ,
ṭ, ṭh, ḍ, ḍh, ṇ,
t, th, d, dh, n,
p, ph, b, bh, m

5 SemiVowels y, r, l, v
6 Sibilants ś, ṣ, s
7 Aspirate h
8 Anusvāra ṁ
9 Visarga ḥ

10 Columns1and3
(Consonants)

k, g,
c, j,
ṭ, ḍ,
t, d,
p, b

11 Columns2and4
(Consonants)

kh, gh,
ch, jh,
ṭh, ḍh,
th, dh,

ph, bh
12 FullStop |

For this, we define that a short syllable has value 0 and a
long syllable has value 1. The aim now is to generate the
bit sequence for the verse. The following algorithm
encapsulates the rules delineated in Section 2.1 above. The
categories of Sanskrit letters used in the algorithm have
been given in Table 2.

Algorithm GenerateBinaryFormOfVerse
// ck = character in position k in the given text.
// b[] is a bit array; j is the next available array index in b.
j = 1;
for k = 1 to LengthOfText

//Ignore non-vowels and mark long vowels as 1 and
//short vowels as 0
if ck א {Consonants, SemiVowels, Sibilants, Aspirate,

FullStop, Space, Anusvāra, Visarga, LineFeed}
delete ck;

else if ck א {LongVowels}
b[j] = 1; j = j + 1;

else if ck א {ShortVowels}
b[j] = 0; j = j + 1;
//Check if the short syllable should change to long:
//1. ‘ai’ and ‘au’ are long;
//2. vowel is long if followed by anusvāra/visarga
//3. vowel is long if followed by double consonant
//for special combinations pr, br, kr, h after the
//vowel, the vowel can be counted as long or short,
//and hence is marked as an exception.
if ck = ‘a’ and ck+1 א {‘i’, ‘u’}

b[j] = 1; j = j + 1;
else if ck+1 א {Anusvāra, Visarga}

b[j] = 1; j = j + 1;
else

if ck+1 א {Consonants, SemiVowels, Sibilant,
Aspirate}

and ck+2 א {Consonants, SemiVowels,
Sibilants, Aspirate}

b[j] = 1; j = j + 1;
if (ck+1 א {‘p’, ‘b’, ‘k’} and ck+2 א {‘r’}) or
(ck+1 א {Aspirate})

j is marked as an exception;
end if

end if
end if

end if
//If the double-consonant handled above was from the
//Columns2and4 set, i.e. a Columns1and3 letter
//followed by an Aspirate, then the vowel should be
//reverted to short
if ck א {ShortVowels} and ck+1 א {Columns1and3} and

ck+2 א {Aspirate} and ck+3 א {Vowels, FullStop,
Space, LineFeed}

DR.R
UPN

AT
HJI(

 D
R.R

UPA
K

NAT
H)

10

b[j] = 0; j = j + 1;
end if

end for
end Algorithm

The advantage of this algorithm is that it provides a huge
savings in terms of processing, for it eliminates all
consonants, etc., which do not play a role in metre
determination. As such, words such as kārtsnyam, in
which there is a concentration of consonants, is processed
very quickly. Also, the algorithm proceeds by first
eliminating all initial consonant sounds initially, and starts
processing only at the first vowel. This again contributes
to a savings in computational time. Further, the
exceptional cases too are noted for later processing, in a
single parse of the verse.

The output produced by the algorithm for the sample pāda
of a verse, “vande gurūṇāṁ caraṇāravinde” is
11011001011.

4.3 Identification of Gaṇa-s
Reordering and recasting Table 1 in terms of binary
values, we have Table 2:

Table 3 – Binary values and decimal equivalents for Gaṇa-s

Syllable-
combination

Gaṇa Decimal
Equivalent

1 000 n 0
2 001 s 1
3 010 j 2
4 011 y 3
5 100 b 4
6 101 r 5
7 110 t 6
8 111 m 7

The gaṇa “bh” has been renamed as “b” just to enhance
ease of parsing. Also, in the following discussion, a
separate short syllable (value 0) is denoted as “l” (for
laghu) while a long one (value 1) is denoted as “g” (for
guru) .

The binary representation that is given as output by the
above algorithm is then divided into groups of three, with
the last one/two remaining bits kept separately. Thus, the
sample output mentioned in Section 4.2 above becomes
110 110 010 11. As per Table 3, the gaṇa-s are thus
identified as “ttjgg”, with the last two binary values being
retained as single values.

4.4 Overall Algorithm to Classify a Verse

Before we identify the gaṇa-s as given above, the verse
has to be split into four pāda-s or quarters. This is done
with the following algorithm which utilizes three hash
tables, one each for the Sama, Ardhasama and Viṣama
metres, and two lookup tables, Ardhasama Lookup Table
(ALT) and Viṣama Lookup Table (VLT).

Algorithm ClassifyVerse
Step 1: Split the verse into two parts (P1, P2) and convert
the two parts of the verse into binary form (B1, B2) using
Algorithm GenerateBinaryFormOfVerse;
Step 2: Generate the set of all possible verse forms Λ in
binary by permuting the exception information gathered
during parsing;
Step 3: Let N1 and N2 be the lengths of B1 and B2
respectively. Starting with the binary representation of the
original verse form and trying for each of the verse forms,
search for the matching varṇa meter as follows;
[Note:
When split into pāda-s, let the binary equivalents of the
pāda-s be B1,1, B1,2, B2,1, B2,2 of lengths N1,1, N1,2, N2,1,
N2,2 respectively and of gaṇa forms G1,1, G1,2, G2,1, G2,2
respectively.

The ALT gives the possible (N1,1, N1,2) values of valid
Ardhasama metres for a given N1 value. The VLT gives
the possible (N1,1, N1,2, N2,1, N2,2) values of valid Viṣama
metres for a given (N1, N2) value.]

for each λ א Λ

[Possibility 1: Equal and even number of syllables in
P1 and P2 – Sama, Ardhasama and
Viṣama metres are possible]

if (N1 = N2) and (N1 mod 2 = 0)
//Sama
generate pāda-s such that N1,1 = N1,2 = N2,1 = N2,2;
generate set Ψ = {forms of λ | last bit of pāda-s =1};
for each ψ א Ψ

generate G1,1, G1,2, G2,1, G2,2;
if B1,1 XOR B1,2 XOR B2,1 XOR B2,2 = 0

if match found on hashing into Sama table
quit;

end if
end if

end for
//Ardhasama
Ω = ALT(N1);
if Ω <> //possible splits exist

for each ω א Ω
generate pāda-s B1,1, B1,2, B2,1, B2,2 as per ω;
generate set Ψ={forms of λ | last bit of pāda-s =1};

DR.R
UPN

AT
HJI(

 D
R.R

UPA
K

NAT
H)

11

for each ψ א Ψ
generate G1,1, G1,2, G2,1, G2,2;
if (B1,1 XOR B2,1 = 0) and (B1,2 XOR B2,2 = 0)

if match found on hashing into Ardhasama table
quit;

end if
end if

end for
end for

end if
//Viṣama
Ω = VLT(N1, N2);
if Ω <> //possible splits exist

for each ω א Ω
generate pāda-s B1,1, B1,2, B2,1, B2,2 as per ω;
generate set Ψ={forms of λ | last bit of pāda-s =1};
for each ψ א Ψ

generate G1,1, G1,2, G2,1, G2,2;
if match found on hashing into Viṣama table

quit;
else if (each of G1,1, G1,2, G2,1, G2,2 is a Sama)
and (match found in list of four special Viṣama)

quit;
else if match found in other special Viṣama

quit;
end if

end for
end for

end if

[Possibility 2: Equal and odd number of syllables in
P1 and P2 - Ardhasama and Viṣama
metres are possible]

else if (N1 = N2) and (N1 mod 2 <> 0)
//Ardhasama
Ω = ALT(N1);
if Ω <> //possible splits exist

for each ω א Ω
generate pāda-s B1,1, B1,2, B2,1, B2,2 as per ω;
generate set Ψ={forms of λ | last bit of pāda-s =1};
for each ψ א Ψ

generate G1,1, G1,2, G2,1, G2,2;
if (B1,1 XOR B2,1 = 0) and (B1,2 XOR B2,2 = 0)

if match found on hashing into Ardhasama table
quit;

end if
end if

end for
end for

end if
//Viṣama
Ω = VLT(N1, N1);
if Ω <> //possible splits exist

for each ω א Ω
generate pāda-s B1,1, B1,2, B2,1, B2,2 as per ω;

generate set Ψ={forms of λ | last bit of pāda-s =1};
for each ψ א Ψ

generate G1,1, G1,2, G2,1, G2,2;
if match found on hashing into Viṣama table

quit;
else if (each of G1,1, G1,2, G2,1, G2,2 is a Sama)
and (match found in list of four special Viṣama)

quit;
else if match found in other special Viṣama

quit;
end if

end for
end for

end if

[Possibility 3: Unequal number of syllables in P1 and P2,
- Viṣama metres possible]

else
Ω = VLT(N1, N2);
if Ω <> //possible splits exist

for each ω א Ω
generate pāda-s B1,1, B1,2, B2,1, B2,2 as per ω;
generate set Ψ={forms of λ | last bit of pāda-s =1};
for each ψ א Ψ

generate G1,1, G1,2, G2,1, G2,2;
if match found on hashing into Viṣama table

quit;
else if (each of G1,1, G1,2, G2,1, G2,2 is a Sama)
and (match found in list of four special Viṣama)

quit;
else if match found in other special Viṣama

quit;
end if

end for
end for

end if
end if

end for
end Algorithm

In the above algorithm, the ALT and VLT save
computational time, because there are numerous ways of
dividing the N1 number syllables of P1 into two unequal
parts. Similar is the case with the N2 number of syllables
of P2. Now the ALT and VLT return a set of possible split
sets for Ardhasama and Viṣama metres respectively, given
N1 and N2. Thus, by only splitting B1 and B2 into pāda-s in
these known possible ways, rather than in numerically all
possible ways, the solution search space is considerably
reduced, thus reducing the computational time.
Furthermore, the binary representation of the syllables
enables the use of binary arithmetic (such as the use of the
operator XOR), which can speed up operations in contrast
to letter-wise comparison.

DR.R
UPN

AT
HJI(

 D
R.R

UPA
K

NAT
H)

12

4.5 Hashing
The hash table for Sama metres is organized as one with
26 buckets, the jth bucket holding metres having j syllables
per pāda. Using the input which is a gaṇa sequence such
as “ttjgg” in the example cited earlier, we first find the
appropriate bucket and then hash into the value [1].

Let each gaṇa in the sequence be denoted as Gi and the
last one or two bits be denoted as Bj. Thus the input to the
hashing function will be of the form G1G2G3… GnB1… Bm
where clearly, n can take a maximum value of 8 and m, a
maximum of 2. We now find the decimal equivalent of
each Gi’s binary value as per Table 3. However, for gaṇa
sequences like nnn and nn, which are the binary sequences
000 000 000 and 000 000 respectively, we get the decimal
equivalent 0 for both. To therefore avoid hashing
collisions, we first append 1 as the most significant bit to
each Gi’s 3-bit equivalent, making each a 4-bit number.
Let the new binary sequence be denoted by R1R2R3…
RnB1..Bm, where each Ri, 1<= i <= n, consists of 4 bits. We
then find the decimal equivalent Ci for each Ri. Thus we
obtain the new sequence of decimal numbers C1C2C3…
CnB1…Bm. The hash key value is calculated as follows:

HashKey = BSA + ∑ C୧ כ 16୬

୧ୀ ଵ + ∑ B୧ כ 2୫
୧ୀ ଵ

where BSA is the Bucket Starting Address given by
BSA = ∑ pଵ୩ିଶଶ

୧ୀଵ + ∑ pଶ୩ି
୧ୀ୩ିଶଶ כ ଷ||ି

ଶ||
 + ∑ pଵ ିଵכ

ୀି
ଷ||ି
ଶ||

Here, p1 = 53 and p2 = 103 are empirically determined
primes. The scheme uses 16 as a multiplier for the Ci’s
because the Binary Coded Decimal scheme is followed for
the Ci’s, and 2 as a multiplier for the Bi’s because the Bi’s
are all single binary digits.

The metre identification is done in O(1) time. With the
established values of p1 and p2, there is found to be a
maximum number of collisions of three, and that too for
very few metres. Collisions were handled using the
chaining method. In all, the maximum number of string
comparisons required to zero-in on the metre is only 3, and
this maximum is actually reached only in very few cases.

The hash table for the Ardhasama metres is designed
according to the syllables in the first two pāda-s while that
for the Viṣama metres is designed according to the
syllables in the four pāda-s of the verse. The hash table
itself provides the caesura for each metre along with the
name of the metre. Thus, the pause-points in each verse
are got at once along with the name of the metre.

4.6 Algorithm for Jāti Metres
The binary sequence earlier computed for the two verse
parts are converted into a decimal sequence with 1’s

converted to 2’s and 0’s converted to 1’s. The algorithm
for Jāti metres adds successive values to check for the
mātrā combinations provided for all the jāti metres, one by
one. Since the rules are complex and include rules that
prohibit overlap of mātrā-s across letters, this rule-based
approach rather than the hash table approach was found
more effective.

5. Conclusions

The benefits of the presented algorithm are many. One
parse of the E-text alone is carried out, all possible
exceptional cases are handled, and the possibilities of
sama, ardhasama and viṣama metres as well as jāti metres
are handled. Further, the initial scheme for binary
conversion ensures that only vowels are processed, and
enables the use of binary operators for comparison, thus
speeding up the computation considerably. Moreover, the
computational schema presented earlier by the authors [4]
to form euphonic conjunctions from given words, finds
application here - input verses incorrectly given without
the euphonic conjunctions having been handled, are
corrected by this algorithm before processing begins.
Another advantage with the presented schema is that the
input E-text can be either as Sanskrit Unicode characters
or as Latin Unicode characters.

Thus, the presented computational algorithm provides, for
the first time, a solution to the non-trivial computational
problem of metre identification in the realm of automated
Sanskrit text processing. It uses a novel schema and
efficient search methods to speedily and yet
comprehensively achieve the aim of identifying the metre
and caesura of given Sanskrit verses.

References

[1] Donald E. Knuth, The Art of Computer Programming
Volume 3: Sorting and Searching, Addison Wesley,
Second Edition, 1998.

[2] Göttingen Register of Electronic Texts in Indian
Languages (GRETIL), www.sub.uni-goettingen.de/
ebene_1 /fiindolo/gretil.htm.

[3] Piṅgala, Chandas-śāstra, Kāvyamālā Series No. 91
(3rd Edition), Bombay, 1938.

[4] Rama N., Meenakshi Lakshmanan, A New
Computational Schema for Euphonic Conjunctions in
Sanskrit Processing, IJCSI International Journal of
Computer Science Issues, Vol. 5, 2009 (ISSN
(Online): 1694-0784, ISSN (Print): 1694-0814), Pages
43-51.

[5] Vaman Shivram Apte, Practical Sanskrit-English
Dictionary Appendix A.I – Sanskrit Prosody, Motilal

DR.R
UPN

AT
HJI(

 D
R.R

UPA
K

NAT
H)

13

Banarsidass Publishers Pvt. Ltd., Delhi, 1998, Revised
and Enlarged Edition, 2007.

[6] Vaman Shivram Apte, Practical Sanskrit-English
Dictionary Appendix A.II – A Classified List of
Sanskrit Metres, Motilal Banarsidass Publishers Pvt.
Ltd., Delhi, 1998, Revised and Enlarged Edition, 2007.

Dr. Rama N., B.Sc. Mathematics (1986), Master of Computer
Applications (1989) and Ph.D. Computer Science (2003). She
served in faculty positions at Anna Adarsh College, Chennai, India
and as Head, Department of Computer Science at Bharathi
Women’s College, Chennai, before moving on to Presidency
College, Chennai, where she currently serves as Associate
Professor. She has 20 years of teaching experience including 10
years of postgraduate (PG) teaching, and has guided 15 M.Phil.
students. She has been the Chairperson of the Board of Studies in
Computer Science for UG, and Member, Board of Studies in
Computer Science for PG and Research at the University of
Madras. Current research interests: Program Security. She is the
Member of the Editorial cum Advisory Board of the Oriental
Journal of Computer Science and Technology.

Meenakshi Lakshmanan B.Sc. Mathematics (1996), Master of
Computer Applications (1999), M.Phil. Computer Science
(2007).Currently pursuing Ph.D. Computer Science at Mother
Teresa Women’s University, Kodaikanal, India. She has also
completed Level 4 Sanskrit (Samartha) of the prestigious
Samskṛta Bhāṣā Pracāriṇī Sabhā, Chittoor, India. Starting off her
career as a software engineer at SRA Systems Pvt. Ltd., she
switched to academics and currently heads the Department of
Computer Science, Meenakshi College for Women, Chennai,
India. She is a professional member of the ACM and IEEE.

DR.R
UPN

AT
HJI(

 D
R.R

UPA
K

NAT
H)

